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Abstract: This paper presents a Q-learning-based pending zone adjustment for received signal
strength indicator (RSSI)-based proximity classification (QPZA). QPZA aims to improve the accuracy
of RSSI-based proximity classification by adaptively adjusting the size of the pending zone, taking
into account changes in the surrounding environment. The pending zone refers to an area in which
the previous result of proximity classification is maintained and is expressed as a near boundary and
a far boundary. QPZA uses Q-learning to expand the size of the pending zone when the noise level
increases and reduce it otherwise. Specifically, it calculates the noise level using the estimation error
of a device deployed at a specific location. Then, QPZA adjusts the near boundary and far boundary
separately by inputting the noise level into the near and far boundary adjusters, consisting of the
Q-learning agent and reward calculator. The Q-learning agent determines the next boundary using
the Q-table, and the reward calculator calculates the reward using the noise level. QPZA updates
the Q-table of the Q-learning agent using the reward. To evaluate the performance of QPZA, we
conducted an experimental implementation and compared the accuracy of QPZA with that of the
existing approach. The results showed that QPZA achieves 11.69% higher accuracy compared to the
existing approach, on average.

Keywords: pending zone; proximity classification; proximity-based services; received signal strength
indicator; Q-learning

1. Introduction

Recently, proximity-based service (PBS) has been widely used in various industries,
including agriculture, commerce, construction, education, and healthcare, due to its oper-
ational simplicity and infrastructure-less feature [1–3]. In these industries, PBS has been
utilized to support a variety of applications, such as inventory management, advertisement,
safety management, attendance management, and patient tracking [4–6]. Especially during
the COVID-19 pandemic, PBS was used for contact tracing to identify close contact with
an infected person within six feet, making it one of the promising solutions to prevent
the spread of the coronavirus [7,8]. Traditionally, location-based services (LBS) have been
used to support applications where a central server estimates the exact position (i.e., co-
ordinates) of devices using trilateration or fingerprinting schemes [9]. However, LBS has
higher complexity with respect to the system architecture and therefore requires higher
installation and maintenance costs compared to PBS. Unlike LBS, PBS has a simple system
architecture consisting of a transmitter and receiver pair, and provides a simple operational
procedure. Specifically, the receiver in PBS directly estimates the relative distance between
the transmitter through direct communication channels such as Bluetooth and Wi-Fi Direct.

In general, the received signal strength indicator (RSSI) is used to estimate the distance
between devices for proximity classification. Specifically, a receiver measures the RSSI
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of the signal transmitted by a sender and estimates the distance from the sender using
a log-distance propagation model that characterizes the relationship between the RSSI
and the distance [10,11]. The estimated distance is then compared with the distance
between the receiver and the reference boundary (i.e., reference distance) predefined for
proximity classification. If the estimated distance is shorter than the reference distance,
the receiver decides that the sender is adjacent; otherwise, it decides that the sender is
far away. However, in real-world environments, the RSSI changes frequently, even if the
distance between the sender and receiver is fixed. This is because the RSSI is easily affected
by the multi-path fading caused by the reflection and diffraction of radio signals and
the interference by radio signals transmitted via the same frequency band [12,13]. The
fluctuation in the RSSI makes accurate proximity classification difficult, and therefore there
are numerous studies on improving the accuracy of RSSI-based proximity classification.

To address this problem, most studies have focused on minimizing the error of distance
estimation in RSSI-based proximity classification. Mathematical models (e.g., modified log-
distance models), statistical models (e.g., moving average models), filtering models (e.g.,
Kalman filter models), and machine learning models (e.g., linear regression models) were used
in [14–17] to minimize estimation errors. However, improving the distance estimation model
alone may not be sufficient to guarantee the accuracy of RSSI-based proximity classification,
as even sophisticated distance estimation models have estimation errors. In particular, when
the actual distance between the sender and receiver is close to the reference boundary, the
result of RSSI-based proximity classification may frequently change, even if the actual distance
is fixed. To overcome this problem, authors in [18,19] used a pending zone that surrounded
the reference boundary. The use of a pending zone mitigates frequent changes in the results of
proximity classification when the actual distance between the sender and receiver is close to
the reference boundary because, within the pending zone, the previously estimated distance
is maintained instead of a newly estimating the distance. However, the approaches proposed
in [18,19] may suffer from low accuracy since they use a fixed size for the pending zone,
regardless of the estimation error that varies depending on the surrounding environment.
Therefore, to improve accuracy, it is necessary to adaptively adjust the size of the pending
zone according to changes in the surrounding environment.

In this paper, we propose Q-learning-based pending zone adjustment for RSSI-based
proximity classification (QPZA). QPZA runs on the BLE tag receiver to improve accuracy
by adaptively adjusting the size of the pending zone, considering changes in the surround-
ing environment. Specifically, QPZA uses Q-learning to expand the size of the pending
zone when the noise level increases and reduce it otherwise. Q-learning is a model-free
reinforcement learning technique in which the Q-learning agent seeks the best action for
the next state, considering the cumulative reward. In QPZA, the action entails adjusting
the size of the pending zone, and the reward indicates the suitability of the action for the
current noise level. The state refers to the distance between the receiver and the bound-
ary of the pending zone. The size of the pending zone is the area between two decision
boundaries, i.e., that between the near boundary and the far boundary. Therefore, QPZA
employs two Q-learning agents to separately adjust the near boundary and far boundary.
To determine the number of states for each Q-learning agent, we use a mean-shift clustering
algorithm to cluster the noise level dataset and calculate the value of each state considering
the centroid for each cluster. QPZA uses two different reward functions to individually
set the reward for the near boundary and far boundary. To evaluate the performance of
QPZA, we conducted an experimental implementation and compared it with the existing
approach that uses a fixed size of the pending zone. The results showed that QPZA has
11.69% higher accuracy compared to the existing approach, on average.

The rest of this paper is organized as follows: Section 2 presents the system model,
which includes the system architecture and distance estimation model. In Section 3, we
describe the design of QPZA in detail. In Section 4, the results of the implementation and
performance evaluation are presented. Finally, in Section 5, we conclude this paper.
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2. System Model

QPZA is designed to improve the accuracy of RSSI-based proximity classification using
Q-learning. In the following subsections, we first describe the architecture of the RSSI-based
proximity classification system with QPZA. It is assumed that devices communicate with
each other using Bluetooth low energy (BLE). Thus, the system consists of senders (i.e., BLE
tags), a reference device (i.e., an anchor beacon), and a receiver (i.e., a BLE tag receiver).
Then, we present the linear regression-based distance estimation model that is used to
estimate the distance between the BLE tag receiver and the BLE tag.

2.1. System Architecture

Figure 1 shows the architecture of the RSSI-based proximity classification system with
QPZA. In the figure, the system is composed of BLE tags, an anchor beacon, and a BLE
tag receiver. The BLE tags are responsible for broadcasting advertising packets to notify
the BLE tag receiver of the beacon information, including a universal unique identifier
(UUID), major ID, minor ID, and transmission power (TxPower). The UUID, major ID,
and minor ID are used to identify the BLE tag, and the TxPower is used to estimate the
distance between the identified BLE tag and the BLE tag receiver. The anchor beacon is a
special type of BLE tag that is placed at a specific location. The anchor beacon broadcasts
advertising packets in the same way the BLE tag does. However, the beacon information of
the anchor beacon is used only to measure the noise level of the surrounding environment.
Whenever the BLE tag receiver receives an advertising packet, it measures the RSSI and
conducts distance estimation using the measured RSSI. To thoroughly examine the effect of
adjusting the pending zone on the accuracy of RSSI-based proximity classification, we make
the assumption that the distance estimation is based on the raw values of the measured
RSSI. If the packet is received from the BLE tag, the BLE tag receiver conducts proximity
classification to decide whether or not the BLE tag is nearby. In the other case, it calculates
the noise level and conducts QPZA to adjust the size of the pending zone.
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Figure 1. System architecture.

In the figure, the pending zone is illustrated as the area between the near boundary
and the far boundary. The pending zone contains the reference boundary predefined by
the system. Therefore, the distance between the BLE tag receiver and the near boundary
(dnb) is less than or equal to the distance between the BLE tag receiver and the reference
boundary (dre f ), while the distance between the BLE tag receiver and the far boundary (dn f )
is greater than or equal to dre f . For proximity classification, the BLE tag receiver determines
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that the BLE tag is adjacent (i.e., true) when the estimated distance of the BLE tag is less
than dnb. Conversely, it determines that the BLE tag is not adjacent (i.e., false) when the
estimated distance of the BLE tag is greater than dn f . If the estimated distance of the BLE
tag is within the pending zone, the BLE tag receiver maintains the same results of proximity
classification as the previous result (i.e., decision pending). In this context, dnb and dn f
are the key criteria for proximity classification. In our work, QPZA adaptively adjusts
dnb and dn f , considering the noise level, thereby improving the accuracy of the proximity
classification. In Section 3, we describe the design of QPZA in detail.

2.2. Distance Estimation Model

Upon receiving the advertising packet, the BLE tag receiver measures RSSI and esti-
mates the distance using a distance estimation model. To this end, we consider three types
of existing distance estimation models: the iBeacon, linear regression, and deep learning
models [20–22]. Then, we select one of the models with the highest accuracy and apply it
to the BLE tag receiver. In this subsection, we describe the design of each model in detail.

2.2.1. iBeacon Model

The iBeacon model is provided by the iBeacon specification of Equation (1) [20].

ediBeacon = 0.89976
(

RSSI
TxPower

)7.7095
+ 0.111 (1)

where ediBeacon is the estimated distance of the iBeacon model and RSSI is the value of
the measured RSSI. The unit of RSSI is a dBm. In the equation, ediBeacon is proportional to
the RSSI and inversely proportional to the TxPower. The iBeacon model is built based on
RSSI datasets that are pre-collected in specific environments. Therefore, it remains fixed
regardless of changes in the environment.

2.2.2. Linear Regression Model

To build the linear regression model, it is assumed that the relationship between RSSI
and log-distance is given by Equation (2) [14].

log(d) = A(RSSI) + B (2)

where d is the distance between the BLE tag receiver and the BLE tag, and A and B are
the coefficient (i.e., regression slope) and log(d) intercept, respectively. The unit of d is
meters. To determine parameters A and B in Equation (2), we use the log-distance dataset
for RSSI-based distance estimation (LD), which is represented by Equation (3):

LD = [(RSSI0, log(d0)), (RSSI1, log(d1)), · · · , (RSSIn, log(dn))] (3)

where RSSIn is the value of the measured RSSI for the (n + 1)-th advertising packet, and dn
is the actual distance for the (n + 1)-th advertising packet. Additionally, the ordinary least
square is used to calculate parameters A and B [21]. Specifically, parameters A and B can
be obtained by Equations (4) and (5), respectively:

A =

n
∑

i=0
(RSSIi −mean(RSSI))(log(di)−mean(log(d)))

n
∑

i=0
(RSSIi −mean(RSSI))2

(4)

B = mean(log(d))− (mean(RSSI)× A)2 (5)

where mean(RSSI) is the average of every RSSI in LD, and mean(log(d)) is the average of
every log(d) in LD. When obtaining parameters A and B, the distance estimation model
expressed as Equation (6) is mounted into the BLE tag receiver. That is, whenever it receives
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an advertisement packet, the BLE tag receiver estimates the distance using the mounted
distance estimation model.

edLR = 10(A(RSSImean)+B) (6)

where edLR is the estimated distance of linear regression model when the value of the
measured RSSI is RSSImean. The linear regression model varies depending on the RSSI
value, and thus it changes when the environment for RSSI collection changes.

2.2.3. Deep Learning Model

To build a deep learning model, we first design a many-to-one deep neural network
(DNN) model that uses multiple RSSI inputs to derive one estimated distance (i.e., edDL).
Figure 2 shows the shape of the many-to-one DNN model, which consists of an input layer,
hidden layers, and an output layer [22].
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The input layer consists of multiple nodes (i.e., circles in the figure) to input the
multiple RSSI inputs generated sequentially. In the figure, the number of RSSI inputs is
equal to l. The number of hidden layers and the number of nodes in each hidden layer
are empirically determined to obtain high accuracy. Additionally, we assume that the
rectified linear unit (ReLU) is used as the activation function to solve the vanishing gradient
problem, in which the gradient gradually converges to zero during the back-propagation
process. Similar to the linear regression model, the deep learning model varies depending
on the RSSI collection environment. However, unlike the other models, it requires multiple
RSSI inputs to estimate distance.

3. Design of QPZA

QPZA is designed to adjust the size of the pending zone to improve the accuracy
of proximity classification that varies according to the noise level of the surrounding
environment. In QPZA, the BLE tag receiver first checks the noise level using the anchor
beacon, and then it adjusts the size of the pending zone depending on the noise level.
QPZA expands the size of the pending zone when the noise level increases. In this case,
the difference between dnb and d f b increases. In the opposite case, the difference between
dnb and d f b decreases.

Figure 3 shows an operational block diagram for QPZA. In the figure, QPZA consists
of a noise level calculator, a near boundary adjuster, and a far boundary adjuster. The
noise level calculator is used to calculate the noise level (σ), and the near and far boundary
adjusters are used to adjust dnb and d f b, respectively. Each adjuster constitutes the Q-
learning agent and the reward calculator. The former selects the action (i.e., decrease, keep,
and increase) to determine the next dnb or d f b (i.e., d′nb or d′ f b). The latter checks whether
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or not the selected action is suitable for the noise level, and then calculates the reward
considering the result of the check. The reward is used to update the Q-learning agent.
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The BLE tag receiver conducts QPZA whenever it receives an advertising packet
from the anchor beacon. Specifically, after obtaining the estimated distance of the anchor
beacon (i.e., edanc), the noise level calculator runs to determine σ, which is calculated as
the difference between edanc and the actual distance between the BLE tag receiver and the
anchor beacon (i.e., danc). Thus, in QPZA, the noise level is expressed in meters. Then, the
near and far boundary adjusters adjust dnb and d f b considering the cumulative reward. To
this end, the Q-learning agent for each adjuster maintains a Q-table. Tables 1 and 2 show
the Q-table for the near boundary (Q) and the Q-table for the far boundary (Q̂), respectively.

Table 1. Q-table for near boundary.

Q-Table for Near Boundary Q
Action

Decrease Keep Increase

State

nb1 Q(1, 1) Q(1, 2) Q(1, 3)
nb2 Q(2, 1) Q(2, 2) Q(2, 3)
. . . . . . . . . . . .

nbm Q(m, 1) Q(m, 2) Q(m, 3)

Table 2. Q-table for far boundary.

Q-Table for Far Boundary (Q̂)
Action

Decrease Keep Increase

State

f b1 Q̂(1, 1) Q̂(1, 2) Q̂(1, 3)
f b2 Q̂(2, 1) Q̂(2, 2) Q̂(2, 3)
. . . . . . . . . . . .
f bm Q̂(m, 1) Q̂(m, 2) Q̂(m, 3)

In the Q-table, each row represents a candidate distance for each state, which can
be selected as the distance between the BLE tag receiver and boundary. The state is the
index of the candidate distance, and the number of states is equal to m for both boundaries.
Accordingly, dnb, d′nb, d f b, and d′ f b can be given by Equations (7) and (8), respectively.

dnb, d′nb ∈ {nb1, nb2, · · · , nbm} (7)
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d f b, d′ f b ∈ { f b1, f b2, · · · , f bm} (8)

where nbm is the m-th candidate distance in the Q-table for the near boundary and f bm
is the m-th candidate distance in the Q-table for the far boundary. The columns of the
Q-tables represent the actions, including decrease, keep, and increase, and the index for
each action is 1, 2, and 3, respectively. If the Q-learning agent decides the action to be
decrease or increase, dnb and d f b change; otherwise, they are kept as their previous distance.
The elements of the Q-table denote state-action values or Q-values, expressed as Q(snb, anb)
and Q̂(s f b, a f b) for near and far boundaries, respectively. For each boundary, snb and s f b
indicate the indices of the candidate distance (i.e., states), and anb and a f b indicate the
indices of the actions.

The number of states (i.e., m) is determined based on the number of clusters in the noise
level dataset (NL), which consists of noise level data samples collected in an environment
in which the number of neighboring BLE tags varies. The noise level dataset is given by
Equation (9).

NL = {σ1, σ2, · · · , σl} (9)

where l is the number of noise level data samples in NL. To determine the number of
clusters in NL, a mean-shift clustering algorithm is used. The algorithm creates a density
function for a given dataset using kernel density estimation (KDE) and searches for local
maxima in the density function [23]. The number of clusters is equal to the number of local
maxima in the density function. The density function for NL can be obtained using KDE,
as shown in Equation (10).

f (x) =
1
lh

l

∑
i=1

K
(

x− σi
h

)
(10)

where f (x) is the density function for NL, h is the bandwidth (also referred to as scale) for
KDE, and K(x) is the Gaussian kernel function given by K(x) = e−x/2. The value of h is
determined to maximize the inter-cluster variance and minimize the inter-cluster variance.
The number of local maxima in f (x) is obtained by counting the number of arguments (i.e.,
xs) that simultaneously satisfy f ′(x) = 0 and f ′′ (x) < 0, where f ′(x) and f ′′ (x) are the
first and second derivatives of f (x), respectively. Note that x > 0 and x ∈R. The value
of the argument for each local maximum denotes the centroid of each cluster. Finally, m
is determined as the sum of the number of local maxima and the number of reference
boundaries (i.e., 1).

The value of the candidate distance for each state is determined using the reference
distance and the centroid of clusters. Specifically, as the state increases, the candidate
distance for the near boundary increases, and the candidate distance for the far boundary
decreases. The value of the i-th candidate distance for the near and far boundaries (i.e., nbi
and f bi) is calculated using Equations (11) and (12), respectively.

nbi = dre f − cm−i (11)

f bi = dre f + ci−1 (12)

where cm−i is the centroid of the (m− i)-th cluster, and ci−1 is the centroid of the (i− 1)-th
cluster. Here, c0 is equal to zero. Therefore, nbm and f b1 are the same as dre f .

To determine d′nb and d′ f b, each Q-learning agent selects the action with the largest
Q-value at the current state in the Q-table. If two or more actions have the same largest
Q-value, the Q-learning agent randomly selects one of them. The selected actions by each
Q-learning agent can be given by Equations (13) and (14), respectively.

anb
t = arg max

a
Q(snb

t , a) (13)
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a f b
t = arg max

a
Q̂(s f b

t , a) (14)

where snb
t and s f b

t are the current states for the near and far boundaries, and anb
t and a f b

t
are the indices of the selected actions for the near and far boundaries, respectively. It is
assumed that t is equal to the number of executions of QPZA, and the initial states for
both boundaries (i.e., snb

0 and s f b
0 ) are predefined by the system within {nb1, nb2, · · · , nbm}

and { f b1, f b2, · · · , f bm}. Upon selecting the action, the next states (i.e., snb
t+1 and s f b

t+1) are
determined using Equations (15) and (16).

snb
t+1 =


snb

t − 1 anb
t = 1, snb

t > 1
snb

t + 1 anb
t = 3, snb

t < m
snb

t otherwise
(15)

s f b
t+1 =


s f b

t − 1 a f b
t = 1, s f b

t > 1
s f b

t + 1 a f b
t = 3, s f b

t < m
s f b

t otherwise

(16)

Each Q-learning agent then obtains d′nb and d′ f b as nbsnb
t+1

and f b
s f b

t+1
, respectively.

For instance, if the selected action is decrease and dnb = nb3 (i.e., snb
t = 3), d′nb = nb2

(i.e., snb
t+1 = 2).

To adaptively adjust the size of the pending zone, the Q-table is updated based on the
reward at every execution of QPZA. The reward indicates the suitability of the selected
action for the calculated noise level. Consequently, the value of the reward for each
boundary varies based on the difference between the adjusted boundary and the calculated
noise level. For example, if the calculated noise level is greater than the size of the adjusted
pending zone, the value of the reward for the near boundary (i.e., rnb

t ) will be negative,
while that of the far boundary (i.e., r f b

t ) will be positive, thereby expanding the size of the
pending zone. The reward calculator calculates the reward by comparing the calculated
noise level (i.e., σ) and the adjusted boundaries (i.e., d′nb and d′ f b). Therefore, rnb

t and r f b
t

can be obtained by Equations (17) and (18), respectively.

rnb
t =


−1

∣∣∣dre f − d′nb

∣∣∣ < σ/k

0
∣∣∣dre f − d′nb

∣∣∣ = σ/k

+1
∣∣∣dre f − d′nb

∣∣∣ > σ/k

(17)

r f b
t =


+1

∣∣∣d′ f b − dre f

∣∣∣ < σ/k

0
∣∣∣d′ f b − dre f

∣∣∣ = σ/k

−1
∣∣∣d′ f b − dre f

∣∣∣ > σ/k

(18)

where k is the noise level coefficient.
Once the reward calculator determines the reward, the Q-learning agent updates

the Q-table accordingly. Specifically, the Q-table for each boundary is updated using
Equations (19) and (20), respectively.

Q(snb
t , anb

t )← Q(snb
t , anb

t ) + α×
[
rnb

t + γ×max
a

Q
(

snb
t+1, a

)
−Q

(
snb

t , anb
t

)]
(19)

Q(s f b
t , a f b

t )← Q(s f b
t , a f b

t ) + α×
[
r f b

t + γ×max
a

Q
(

s f b
t+1, a

)
−Q

(
s f b

t , a f b
t

)]
(20)
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where γ is a discount factor that indicates the significance of future rewards, and α is a
learning rate that determines the extent to which the newly obtained Q-value supersedes
the old Q-value. Both parameters γ and α are set to values between 0 and 1.

4. Implementation and Performance Evaluation

QPZA is designed to enhance the accuracy of RSSI-based proximity classification
by adaptively adjusting the size of the pending zone. To evaluate the performance of
QPZA, we implemented an RSSI-based proximity classification system with QPZA using
Raspberry Pi. We then compared the performance of QPZA with that of an existing scheme
that employs a fixed size of the pending zone. The subsequent subsections present the
implementation details and the results of the performance evaluation in sequence.

4.1. Implementation

The anchor beacon, BLE tag, and BLE tag receiver are implemented on Raspberry Pi
4 Model B, which is equipped with Quad-Core Cortex-A72 1.5 GHz CPU and 2 GB RAM [24]
and operates on Raspberry Pi OS. We developed the BLE communication capability of
devices operating over the 2.4 GHz ISM band using the BlueZ library [25]. The anchor
beacon and BLE tag were set to transmit an advertising packet in the iBeacon packet format
every 500 ms, with the TxPower set to −59 dBm. The iBeacon packet format has fixed-
length data of 30 bytes containing UUID, major ID, minor ID, and TxPower. The distance
estimation model and QPZA model are mounted on the BLE tag receiver. To develop the
distance estimation model and QPZA, we collected RSSI data using a database (DB) server
built on MySQL. Table 3 shows the specifications of the DB server.

Table 3. DB server specifications.

Component Description

Operating system Windows 10 Pro 64 bit
Processor Intel core i7-8700 CPU 3.20 GHz

HDD 500 GB
RAM 8 GB

Web server Apache Tomcat
Database MySQL

We collected RSSI data in two different environments: a small room (8 × 13 m2) and a
large room (15 × 21 m2). In both environments, the BLE tag receiver was positioned at the
center of the room, and the distance between the anchor beacons and BLE tag receiver (danc)
was set to 1 m. In the case of the small room, the actual distance between the BLE tags and
BLE tag receiver was set to 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, and 4.00 m. In the other case, it
was set to 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00, 6.00, and 7.00m. The collected datasets
(i.e., LD and NL) were divided into training and test datasets at a ratio of 7:3. Using the
LD and NL datasets, we built the linear regression-based distance estimation model and
the QPZA using scikit-learn, an open-source Python library [26].

Figure 4a,b depicts the linear regression models that show the relationship between
RSSI and log(d) for the small and large rooms, respectively. In the figures, the black dots
represent the data in the training dataset of LD, and the red lines indicate the results of
Equation (2). In both cases, the value of log(d) decreases as the value of RSSI increases
because the signal strength tends to decrease as the distance between the BLE tag receiver
and the BLE tag increases. The trained linear regression models are different due to
environmental variations such as multi-path fading. Specifically, the parameters A and
B in Equation (2) for the small room are −0.02283564 and −1.35625393, and those for the
large room are −0.0327501 and −1.96797933, respectively. Consequently, we obtained the
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linear regression-based distance estimation models for each room, which are expressed by
Equations (21) and (22).

edsr = 10(−0.02283564×RSSI−1.35625393) (21)

edlr = 10(−0.0327501×RSSI−1.96797933) (22)

where edsr and edlr are the estimated distance for small room and large room, respectively.
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To create the deep learning model, we used the Keras and TensorFlow Python open-
source libraries [27]. The number of nodes in the input layer was set to five for both rooms,
allowing five RSSI inputs to estimate the distance. The number of hidden layers was set to
four, with the number of nodes for each hidden layer being set to 64, 64, 32, and 16. The
batch size, epoch, and learning rate were set to 200, 200, and 0.0001, respectively.

To create the Q-table used in QPZA, we performed mean-shift clustering on the
training dataset of NL. We set the bandwidth for KDE to 0.32 and used a reference distance
of 1.5 m and 2.5 m for each room. We obtained three and five clusters for each room,
respectively, and the centroids of these clusters were 0.17, 0.33, and 0.50 and 0.22, 0.25, 0.31,
0.38, and 0.57, respectively. Based on these results, we created the states of the Q-tables
for each room, as shown in Table 4. We developed the Q-learning agents, including the
Q-table, using Java and installed it on the BLE tag receiver.

Table 4. States of near and far boundary for small and large room.

State

Small Room Large Room

Near Boundary
(m)

Far Boundary
(m)

Near Boundary
(m)

Far Boundary
(m)

1 1.00 1.50 1.93 2.50
2 1.17 1.67 2.12 2.72
3 1.33 1.83 2.19 2.75
4 1.50 2.00 2.25 2.81
5 - - 2.28 2.88
6 - - 2.50 3.07

4.2. Performance Evaluation

To evaluate the performance of the distance estimation model, we compared the esti-
mated distance, which varies depending on the models (i.e., the iBeacon, linear regression,
and deep learning models). Figure 5a,b shows the distance estimation models for each
small and large room, respectively. The iBeacon model is fixed regardless of room type,
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whereas the linear regression and deep learning models change depending on the training
dataset. Therefore, in each figure, an identical iBeacon model is depicted, but different
linear regression and deep learning models are displayed. In both figures, the estimated
distance tends to exponentially decrease as the RSSI increases, regardless of the estimation
model. However, the difference in the estimated distance increases as the RSSI decreases.
This is because each model defines the relationship between the RSSI and the estimated
distance differently. Specifically, the estimated distance of the iBeacon model is more af-
fected by changes in the RSSI than those of the linear regression and deep learning models
are. Comparing the linear regression model and the deep learning model, the latter is less
affected by the RSSI.
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Tables 5 and 6 present the estimated distance and root mean square error (RMSE) for
the small room and large room, respectively. To obtain the estimated distance, we input
the test dataset into both models. The estimated distance for the same actual distance is
presented differently in each table since the RSSI dataset used for distance estimation was
collected in differently sized rooms. Since the linear regression model is built based on LD,
the data value of which varies depending on the environment, it provides more accurate
estimation results than the iBeacon model does. Therefore, in the table, the linear regression
model has a smaller estimation error (i.e., the difference between the actual distance and
the estimated distance) than the iBeacon model does, on average. Consequently, the RMSE
of the linear regression model is smaller than that of the iBeacon model. Quantitatively, for
the small and large rooms, the linear regression model obtained 76.18% and 65.17% smaller
RMSEs compared to the iBeacon model, respectively. Similar to the linear regression model,
different deep learning models are built according to the room type. However, the deep
learning model uses multiple RSSI inputs to estimate distance; thus, it is less affected by
RSSI volatility compared to the linear regression model. Specifically, for each room, the
deep learning model has 1.23% and 36.40% smaller RMSEs than the linear regression model
does, respectively. The RMSE can be calculated using Equation (23).

RMSE =

√
∑N

i=1‖y(i)− ŷ(i)‖2

N
(23)

where N is the number of data samples in the test dataset, y(i) represents the actual
distance for the i-th data samples, and ŷ(i) represents the estimated distance for the i-th
data samples.
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Table 5. Average estimated distance and root mean square error for small room.

Actual Distance
(m)

Estimated Distance (m) RMSE

iBeacon Linear
Regression

Deep
Learning iBeacon Linear

Regression
Deep

Learning

0.5 0.76 0.86 0.48 0.30 0.37 1.14
1 1.64 1.21 1.03 0.76 0.26 0.92

1.5 2.52 1.36 1.66 1.23 0.18 0.78
2 2.55 1.49 2.36 7.44 1.00 0.70

2.5 7.91 2.59 2.52 2.69 0.53 0.66
3 4.75 2.03 2.59 9.95 1.15 0.66
4 10.22 2.93 2.69 1.43 2.19 0.71

Average - - - 3.40 0.81 0.80

Table 6. Average estimated distance and root mean square error for large room.

Actual Distance
(m)

Estimated Distance (m) RMSE

iBeacon Linear
Regression

Deep
Learning iBeacon Linear

Regression
Deep

Learning

0.5 0.68 0.71 0.44 0.23 0.23 1.18
1 1.59 1.23 1.09 0.74 0.33 0.95

1.5 2.40 1.61 1.54 0.46 0.13 0.79
2 1.91 1.40 2.14 2.84 0.86 0.69

2.5 4.16 2.37 3.51 5.03 1.37 0.63
3 5.68 2.96 2.57 5.27 1.42 0.61
4 6.98 3.48 3.62 1.77 1.04 0.64
5 5.68 3.02 4.29 2.25 2.08 0.71
6 5.82 3.05 6.15 14.39 2.73 0.85
7 18.27 7.66 6.34 4.95 3.01 0.96

Average - - - 3.79 1.32 0.80

To verify the feasibility of QPZA, we compared the accuracy of QPZA with that of the
fixed pending zone, the size of which is fixed at 1 m. In the experiment, the accuracy refers
to the proportion of correct estimates (i.e., true and false estimates) across all data samples
contained in the test datasets. Figure 6a–f shows the accuracy of proximity classification
for the small and large rooms using different distance estimation models. The figures
indicate that the accuracy reduces when the actual distance is close to the boundaries of
the pending zone. This is because the error of the distance estimation model caused by
RSSI volatility has a greater effect on proximity classification when the actual distance
is closer to the boundaries of the pending zone. In the case of a large room, the error of
the average estimated distance was larger compared to that of the small room since the
RSSI was more affected by external factors such as multi-path fading when the room size
expanded. Therefore, higher accuracy was obtained for the small room compared to the
large room. On average, the accuracy of the fixed pending zone and QPZA for a small
room was 90.51% and 96.55%, respectively. On the other hand, is the accuracy of these was
89.83% and 94.4% for a large room, respectively. As shown in the figures, the lower the
RMSE of the distance estimation model, the higher the average accuracy. Specifically, in the
small room, the iBeacon, linear regression, and deep learning models have 88.87%, 90.50%,
and 91.14% accuracy, respectively. In the large room, they achieve 93.93%, 95.87%, and
96.69% accuracy, respectively, on average. This is because accurate distance estimation is
likely to increase the accuracy of proximity classification. Overall, QPZA showed better
performance compared to the fixed pending zone since QPZA adaptively adjusts the size
of the pending zone according to the noise level. On average, QPZA has 6.68% and 5.13%
higher accuracy than the fixed pending zone does for each room. In the case where the
actual distance is the same as the reference distance (i.e., 1.5 m for the small room and 2.5 m
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for the large room), QPZA achieves 13.67% and 9.70% higher accuracy compared to the
fixed pending zone for each room.
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To investigate the impact of the reward functions of QPZA on the accuracy of proximity
classification, we varied the noise level coefficient (i.e., k in Equations (17) and (18)) between
1, 2, and 4 for each room. Figure 7a,b illustrates the accuracy of proximity classification
depending on the noise level coefficient. Regardless of room type, the highest average
accuracy of proximity classification was achieved when k = 2. This is because the difference
between the estimated distance and the reference distance was almost the same as half of
the noise level. When k = 1, each reward for near and far boundaries was more biased
toward –1 and 1, respectively, compared to k = 2. Conversely, it was more biased toward
1 and –1, respectively, when k = 4. When k = 2 and k = 4, the pending zone was not
appropriately sized, resulting in less accurate proximity classification. Quantitatively, the
accuracy of proximity classification for k = 2 was 9.10% and 7.34% higher than that for
k = 1 and k = 4, respectively.
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5. Conclusions

In this paper, we propose QPZA, which aims to improve the accuracy of RSSI-based
proximity classification by adaptively adjusting the size of the pending zone based on the
noise level of the surrounding environment. To achieve this, QPZA measures the noise
level by calculating the difference between the actual distance and the estimated distance of
the anchor beacon. The measured noise level is then input into the near and far boundary
adjusters, which adjust the near and far boundaries separately. Each boundary adjuster
consists of a Q-learning agent and a reward calculator, with the former determining the
next boundary using the Q-table and the latter calculating the reward using the measured
noise level. The reward is used to update the Q-table of the Q-learning agent. To verify
the feasibility of QPZA, we conducted an experimental implementation using Raspberry
Pi 4 Model B. We collected the RSSI data of BLE tags and anchor beacons in small and
large rooms and developed the distance estimation models and QPZA using the collected
datasets and Python’s open-source libraries. We compared the experimental results of
QPZA with those of the fixed pending zone, the size of which was set to 1 m. The results
showed that QPZA outperformed the fixed pending zone overall, achieving 13.67% and
9.70% higher accuracy of RSSI-based proximity classification compared to the fixed pending
zone for the small and large rooms, respectively. In future work, we plan to explore the
optimization of proximity classification systems to maximize accuracy outcomes, such as
by employing advanced distance estimation models and time series data preprocessing.
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